Учебно-технический комплекс школьного кабинета физики

Учебно-технический комплекс кабинета физики имеет блочномодульное построение, применение которого обеспечивает плавный переход от традиционных методов организации учебно-воспитательного процесса к применению самых современных технических средств организации учебной деятельности по физике в общеобразовательной школе.

Концептуально современную структуру учебно-технического комплекса по физике условно можно разбить на четыре составляющих крупных модуля:

  • 1) технические средства обучения;
  • 2) оборудование общего назначения;
  • 3) оборудование демонстрационное;
  • 4) оборудование лабораторное.

Модуль «Технические средства обучения» условно разбит на три блока: основной, укомплектованный современными техническими средствами обучения; традиционный, укомплектованный традиционными технические средства обучения; специальный, укомплектованный современными техническими средствами, выполняющими роль повышения научной организации педагогического труда учителя физики и его учеников.

Модуль «Оборудование общего назначения» состоит из трех блоков: общее оборудование, измерительные приборы, принадлежности для опытов.

Модуль «Оборудование демонстрационное» сформирован с учетом разделов курса физики и включает четыре блока: демонстрационное оборудование по механике, демонстрационное оборудование по молекулярной физике и термодинамике, демонстрационное оборудование по электродинамике, демонстрационное оборудование по оптике и квантовой физике.

Модуль «Оборудование лабораторное» классифицируется по видам лабораторного эксперимента и состоит из четырех блоков: оборудование для фронтальных работ; оборудование для кратковременных практических работ; оборудование для работ физического практикума; оборудование лабораторно-вспомогательное и материалы.

Технические средства обучения

Отличительной чертой нашей эпохи является увеличение степени опосредованности как деятельности с относительно простыми материальными объектами, так и деятельности со сложными информационными системами.

Не является исключением и педагогическая деятельность, предметом которой является такая сложная динамическая информационная система, как человек. Причем все возрастающую роль в этой деятельности играют технические средства обучения. Сокращенно - ТСО.

Остановимся на терминологическом аспекте понятия «технические средства обучения». Это необходимо сделать, чтобы избежать неоднозначности в определении ТСО. Число этих определений довольно велико, хотя большинство из них весьма сходны по своей основе.

Для того чтобы дать оценку этим определениям и обозначить свою точку зрения на содержание понятия «технические средства обучения», рассмотрим вначале, что понимается под средствами человеческой деятельности вообще.

В широком смысле под средствами деятельности понимается все то, что стоит между ее субъектом и желаемым продуктом. Иначе говоря, если тот или иной акт (предмет, явление) ведет к данной цели, он по отношению к ней выступает как средство.

В более узком смысле понятие «средство» означает «орудие деятельности». Технические средства обучения являются средствами педагогической деятельности именно в этом, узком, смысле. В педагогической литературе иногда используют термин «технические средства учебной деятельности» (ТСУД), которая разделяется на деятельность учения и деятельность обучения. Мы же будет придерживаться терминологии, где под обучением понимается совместная деятельность обучающего и обучаемого, и, соответственно, будем использовать термин «технические средства обучения» - «ТСО».

К техническим средствам обучения относят совокупность предметов и устройств, которые выполняют информационную, управляющую или тренирующую функции.

Несмотря на общность подходов к ограничению объема понятия «технические средства обучения», эти определения можно разделить на две группы.

К первой группе принадлежат определения, в которых к ТСО относят компьютеры, видеомагнитофоны, диапроекторы, графопроекторы и другую подобную аппаратуру.

Ко второй группе можно отнести определения, в которых под техническими средствами обучения понимают совокупность специфических учебных пособий (компьютерных программ, видеофильмов, диафильмов и т.п.) и соответствующей аппаратуры, с помощью которой воспроизводится заложенная в этих пособиях информация.

Такие определения следует считать обоснованными, так как ни названные носители учебной информации, ни соответствующая им аппаратура не используются друг без друга. Исключения составляют ситуации, когда, например, эта аппаратура является объектом изучения (при подготовке ремонтников видеоаппаратуры, операторов ЭВМ и т.п.).

Назначение специфических учебных пособий как элемента системы «ТСО» - фиксация и хранение учебной информации, представленной в недоступной (магнитная запись, оптическая запись и т.п.) или малодоступной (диапозитив, фолия и т.п.) для воспроизведения органами чувств форме. Назначение аппаратуры - преобразование этой информации в форму, доступную для восприятия.

Итак обобщим, ТСО - это «орудия» учебной деятельности. Их основные функции - представление информации, управление процессом учения и контроль за его ходом. От других средств обучения (учебно-наглядных пособий, вербальных средств обучения, лабораторного оборудования) они отличаются способом реализации этих функций: между процессом предъявления учебной информации и ее потреблением необходимо дополнительное звено - техническое устройство преобразования информации.

Возникновение и совершенствование технических средств обучения закономерно обусловлено развитием способов информационного обмена в обществе. В «дотехнологический» период подрастающему поколению передавали знания, не отделенные от обладающего ими субъекта. Создание знаковых систем и возникновение письменности привело к тому, что зафиксированные на материальном носителе знания превратились в информацию, которую можно передавать и хранить в виде сообщений. Этот этап можно считать революционным в развитии средств обучения.

В процессе развития информационного обмена как между современниками, так и между поколениями людей информационный поток увеличивался. Возникла объективная потребность в более емких носителях информации и новых способах ее передачи. Это привело к изменению формы составляющих информационный поток элементов (сообщения стали передаваться закодированными), изменению материала носителей информации, применению кодирующих и декодирующих устройств. Появились механический, оптический и магнитный способы записи звука, способы создания на экране неподвижных и движущихся световых изображений проецируемых объектов, позднее телевидение и видеозапись. По мере развития этих способов передачи информации и соответствующих им средств они стали все более широко использоваться в обучении. На протяжении последних десятилетий именно радио, телевидение, звуко- и видеозапись относили к современным техническим средствам обучения.

И сегодня в мировой педагогике значительное место продолжает отводиться развитию этих технических средств обучения и максимальному использованию их образовательных возможностей. Однако в настоящее время в учебный процесс внедряются принципиально новые технические средства обучения - компьютеры. Их широкое распространение обусловлено, с одной стороны, непрерывным многократным возрастанием информационного объема в обществе, с другой - возникновением новых способов записи, хранения, преобразования и представления информации.

Современный этап выделяют как переход от традиционных средств информации к средствам новой информационной технологии обучения и один из путей повышения эффективности обучения в широком использовании этих средств. И если возникновение письменности считается революцией в развитии средств обучения, современный этап можно по праву назвать революционным в развитии технических средств обучения.

Но о каких бы ТСО ни шла речь - традиционных или новейших -главной, определяющей их функцией является информационная, в соответствии с особенностями, спецификой, принципами и требованиями процесса обучения.

Технические средства обучения применяются тогда, когда, например: • органы чувств человека не способны воспринять тот или иной тип

сигнала;

  • • для передачи учебной информации с помощью традиционных способов (речь, ознакомление с натуральными объектами) требуется слишком много времени;
  • • непосредственно наблюдаемые признаки изучаемого объекта или процесса не отражают его сущности, и поэтому требуется исследование недоступных для непосредственного наблюдения характеристик изучаемых объектов;
  • • непосредственное наблюдение объекта или процесса вообще невозможно или затруднено и в других подобных ситуациях.

Во всех этих случаях первичную информацию заносят на специальные промежуточные носители. Этот процесс осуществляется с помощью технических устройств, преобразующих информационные сообщения одного типа в сообщения другого типа, - кодирующих устройств. То есть информация на промежуточных носителях содержится в закодированном виде. Носители информации являются долговечными и могут использоваться многократно в течение многих лет.

Воспроизведение информации осуществляется путем декодирования, в результате чего она приобретает форму звуковых, световых или иных сообщений, доступных для восприятия органами чувств обучающихся.

Иными словами, технические средства обучения, представляющие собой совокупность специальных носителей информации и декодирующих устройств, способствуют расширению возможностей учителя как источника информации, передающейся по каналам прямой связи, и ученика как приемника информации, передающейся по каналам обратной связи.

В восприятии учебной информации участвуют различные органы чувств (рецепторы) учащихся: слух, зрение, осязание, обоняние и др. Наиболее активно в обучении задействованы слуховые и зрительные анализаторы. Соответствующие способы предъявления информации называют: слуховой (аудитивный), зрительный (визуальный), звукозрительный (аудиовизуальный). И соответственно все наиболее распространенные ТСО по способу предъявления информации можно разделить на три класса: визуальные, аудитивные и аудиовизуальные ТСО.

Остановимся более подробно на психолого-педагогических возможностях технических средств обучения кабинета физики.

В учебно-воспитательном процессе ТСО кабинета физики помогают создавать условия, необходимые для «живого созерцания». Отображая действительность, они позволяют оперировать непосредственно фактами природы, жизни, науки. Собранные в учебный фильм (учебную компьютерную презентацию, серию слайд-кадров) отдельные фрагменты составляют образную модель, дающую определенное представление об оригинале. Чувственный образ, утверждает психология, лишь в известных рамках связан с объектом, который он отражает. Это именно сходство, а не тождество. Образная модель (компьютерная модель, фильм, презентация) выступает как известное выделение деталей, необходимых в учебно-познавательных целях. Под образной моделью объекта понимают мысленно представляемую или материально реализованную систему, способную замещать объект так, что ее изучение дает новую информацию об этом объекте. Используя звукозрительную модель, выделяют те стороны объекта, изучение которых поможет сделать вывод о сущности объекта. Модель не содержит полноценного знания об объекте, а является лишь источником, дающим материал для мышления и воображения. Отбор, выделение наиболее значимого, важного осуществляют разработчики модели. Создавая зрительно-звуковой образ, они ищут средства для отражения этого главного, существенного в объекте и обеспечивают «мостик» для перехода от чувственного образа к логическому мышлению, так как на основе полученных через модель знаний о структуре объекта крайне важно сформулировать понятия и теоретические выводы.

Чем отличаются модели ТСО от традиционных моделей - муляжей, схем, рисунков и т.п.

Во-первых, динамичностью, присущей не только для компьютерных моделей, видео- и кинофильмов, но и для диафильмов, и для серии диапозативов или транспарантов. Основа этой динамичности не только в движении объекта на экране, но и в монтаже, обеспечивающем возможность выделения сущности, наиболее важного, главного в объекте или физическом явлении. Это достигается с помощью монтажа, возможности которого не ограничены. Он позволяет проникнуть в самые глубинные явления, постичь сущность реальной действительности. С его помощью можно показать образование кристаллов, рост и деление клетки, «побывать» на невидимой стороне Луны и сделаться свидетелем событий, происходивших сотни лет назад. Но монтаж не только показывает причинную последовательность события, но и несет определенную идею, мысль, причем раскрывает эту идею в движении, в становлении. В условиях учебного процесса монтаж - это инструмент, средство формирования мысли обучаемого.

Во-вторых, властью над временем и пространством. Сегодня мы можем показать обучаемым события открытия физических законов и явлений, «окунуться» с ними в глубины океана или космоса. Эта особенность ТСО кабинета физики делает их такими орудиями познания, которые расширяют сферу чувственного восприятия.

В-третьих, одновременным воздействием на разные анализаторы. Такое синтетическое воздействие отличается сильной эмоциональностью. Оно порождает «эффект присутствия», ощущения соучастия, иначе говоря, создает ту необходимую эмоциональную основу, на базе которой от чувственного образа легче переходить к абстрагированию, к логическому мышлению.

Эмоциональная окрашенность учебного материала, его красота (в самом глубоком понимании) обеспечивают глубину усвоения, делают познание материала процессом исключительно активным. Эмоции, говорят психологи, - почва интуиции, они пробуждают воображение, ассоциации, концентрируют поиск информации.

Но не только динамика изображения, власть над временем и пространством, «эффект присутствия» привлекают в ТСО. Главное их достоинство в том, что они могут приобщать обучаемых непосредственно к процессу мышления, к процессу рождения и становления мысли. Остановимся подробнее на этой особенности ТСО кабинета физики.

Звукообразная модель (учебный фильм, компьютерная модель, радиопередача, диафильм и т.п.) может сыграть роль мотива, возбуждающего интерес к предстоящему изучению темы, курса, отдельного раздела. Назначение такой модели - поставить цель, дать направление поиска, если необходимо - удивить! Мы часто забываем о необходимости вызывать интерес, увлеченность предметом изучения, упускаем из виду эмоциональное состояние наших учащихся. Однако психологи подчеркивают прямую зависимость активности умственной деятельности от эмоциональных переживаний. Чувства находятся во взаимосвязях с познавательной деятельностью. Они сами берут начало в ней, возникая на основе отражения обучаемым реальной действительности.

Принцип мотивации используется создателями звукообразных моделей. Если мотив не заложен в начальных условиях реализации модели, то возникает опасность равнодушного отношения обучаемых к дальнейшему изложению материала.

ТСО кабинета физики должны и могут приобщать обучаемых к самостоятельному добыванию знаний в процессе сообщения новых фактов и сведений. Путей решения задачи может быть несколько.

Видео, компьютер, телевидение могут показать пути научных открытий, историю их поиска. Однако педагогических эффект будет достигнут лишь тогда, когда история науки показана как борьба идей. Главное достоинство таких дидактических информационных средств в том, что они делают мысль обучаемого активной, учат не только и не столько собирать факты, сколько анализировать их.

ТСО - средство формирования навыка наблюдения. Роль умения наблюдать в человеческой деятельности резко возрастает. Всякое наблюдение есть начало анализа, абстрагирования, отбора фактов для определения их сущности.

Однако способность к наблюдению есть результат научения, определенного отношения к полученному заданию и его осознанию.

ТСО кабинета физики обычно предусматривают возможность формирования у учащихся качества наблюдателя: они содержат мотив или установку, определяющую цель наблюдения, затем, выделяя главное, обеспечивают избирательность наблюдения; наконец, истолковывают результат наблюдения. В итоге желательно, чтобы ТСО предусматривали и задания для самостоятельных наблюдений и последующих выводов. Такие задания не должны быть сложными, но должны требовать догадки, восстановления у учащихся уже известных фактов.

Для формирования навыка наблюдения физических явлений, конечно, особенно удобны компьютерные модели. Они дают возможность обучаемым для самостоятельного наблюдения без вмешательства диктора.

Не менее важна роль ТСО и в процессе развития воображения -воспроизводящего и главным образом творческого. Отдельные выразительные приемы видео и телевидения непосредственно рассчитаны на воображение зрителя, на его предшествующие знания, опыт, которые помогут воссоздать, скажем, целое по показанной части.

ТСО можно использовать при формировании понятий. Понятия складываются обычно в результате длительного анализа и синтеза фактов, явлений, наблюдений. Кино, видео могут сжать во времени этот процесс, выделить главное и тем самым ускорить формирование понятия.

ТСО могут помочь учителю физики сделать процесс изложения новых знаний, формирование понятий, наконец, процесс обобщения и практической проверки знаний увлекательным, интересным, сделать учение постоянным поиском истины. Ключ к этому лежит в проблемном изложении фактов на экране и в звуковой передаче. Специфика ТСО позволяет интересно, увлекательно раскрывать учащимся противоречия между знанием и незнанием, поставить вопрос, решение которого требует самостоятельных теоретических и практических действий, поиска, преодоления затруднений.

В то же время проблемная ситуация, созданная на уроке физики средствами техники, будет эффективной лишь в том случае, если учитывается специфика ТСО. Если проблема легко создается словом или традиционным пособием, то введение в такой урок сложных ТСО вызывает ощущение искусственности и пользы приносит мало.

Совершенно очевидно, что специфика ТСО кабинета физики исключает механическое перенесение традиционных методических приемов на занятия с применением технических средств.

В методическом отношении учебные занятия по физике с применением ТСО отличаются следующим.

Во-первых, такое занятие ведут как бы два преподавателя - наряду с преподавателем в объяснении, беседе, опросе участвует техника.

Конечно, главным остается педагог, он предоставляет слово своему «коллеге», через него осуществляется связь «ученик - учитель», без которой немыслим урок. Однако в определенные моменты учитель физики может уступить место ТСО как источнику учебной информации, как средству обучения, ведущему, управляющему или контролирующему процесс познания.

Во-вторых, техника на занятиях выступает в союзе, комплексе с традиционными средствами обучения - учебником, муляжами, таблицами и др. Учебные занятия с применением ТСО должны стать частью системы, построенной с учетом дидактических принципов.

В-третьих, меняются формы работы на всех этапах учебного занятия.

Приведем примеры возможных вариантов использования ТСО на этапе изложения нового материала: просмотр фильма с последующей беседой; просмотр диапозитивов с параллельным обсуждением; фрагментарное (пошаговое) прослушивание фонодокумента в сочетании с пояснениями педагога; видеоэкскурсия, радиоэкскурсия; просмотр фильма после установочной беседы со специальным заданием (ответить на вопрос, найти обоснование и т.п.).

Примеры использования ТСО на этапе контроля знаний: ответы на вопросы, поставленные в учебном фильме; выполнение контрольного фонодиктанта; пересказ содержания просмотренного диафильма; коллективный комментарий просмотренного фильма и т.д.

ТСО меняет характер работы педагога на всех этапах урока. Учитель физики теперь выступает и в роли автора, составителя комплекса обучающих средств. Эта новая задача не может быть передоверена ни разработчикам звукообразных моделей, ни методистам: комплекс может быть эффективен лишь тогда, когда он определен с учетом содержания темы, специфики всех средств обучения и с учетом особенностей обучаемых данного учебного коллектива. Учитель физики, определяя комплекс ТСО, определяя его содержание и последовательность использования техники, обязан учитывать особенности класса, опыт работы обучаемых с дидактическими информационными средствами.

Оснащение кабинетов физики современными ТСО порождает множество новых разнообразных форм педагогической работы. Необходимо, однако, учитывать одно обстоятельство, которое может оказаться серьезным тормозом в процессе использования техники на уроке. Дело в том, что мультимедиа, компьтеры, видео, телевидение, радио имеют свой «язык», знать который обязательно для глубокого и точного понимания содержания учебной звукообразной модели. Необходимо знакомить учащихся с понятиями: панорама, крупный план, обратный ход времени, двойная экспозиция, монтаж, компьютерная презинтация и т.п. Не понимая языка экранно-звуковых средств, обучаемые не смогут связать эмоциональное с логическим, чувственный образ и научную абстракцию, не научатся думать с помощью компьютерных образов, видео, кино и телевидения.

В настоящее время в учебно-воспитательном процессе значительно возрастает роль современных компьютерных ТСО. Главное состоит сейчас в том, чтобы найти наиболее целесообразную, разумную, удобную форму для их применения.

Укрепление учебно-материальной базы общеобразовательных школ, использование современных средств обучения интенсифицирует учебно-воспитательный процесс.

Однако в настоящих условиях задачи школы усложняются. Для их успешного решения требуется непрерывное совершенствование форм и методов учебно-воспитательной работы на основе широкого использования достижений педагогики, психологии и смежных наук.

Одним из важнейших факторов повышения эффективности учебно-воспитательного процесса и управления им является рациональное использование технических средств обучения.

В настоящее время в кабинетах физики общеобразовательных школ используют различные варианты применения технических средств обучения:

  • • аппаратура в учебном кабинете устанавливается стационарно;
  • • аппаратура устанавливается на тележках-подставках и передвигается из препараторской в класс по необходимости (передвижная система);
  • • отдельная аппаратура монтируется стационарно в классе, а другая -передвигается из препараторской в класс (комбинированная система). Перечисленные варианты имеют свои плюсы и минусы, но все они

страдают одним существенным недостатком отсутствия связи с общим центром управления, особенно сильно это ощущается при комплексном использовании средств обучения.

В этом случае актуальным стало создание централизованной компьютеризированной система технических средств обучения - автоматизированного комплекса преподавателя физики - АКП «Физика». Комплекс предназначен для повышения эффективности процесса обучения на основе применения современных технических средств. Комплекс не только решает технические задачи, но и является средством реализации новых подходов к обучению физике, открывая возможности для построения в кабинете физики личностно-ориентированной образовательной среды.

Структура автоматизированного комплекса преподавателя - АКП «Физика» сформирована исходя из общих задач, стоящих перед учебным процессом по физике в условиях кабинетной системы обучения, и новых принципов организации учебного процесса (демократизация, отказ от авторитарности, педагогика сотрудничества, гуманизация, то есть формирование в процессе обучения новых отношений учителя и учащихся) и обеспечивает принципиально новые педагогические и методические решения, обладая широким спектром технических возможностей. АКП ориентирован на использование разных методов и форм обучения, поэтому может быть применен в кабинетах физики образовательных учреждений разного типа и профиля, при различных технологиях обучения физике, с учетом особенностей практически каждого преподавателя физики (преподаватель может применять все средства, входящие в АКП, или часть средств, постоянно расширяя их набор).

В основу построения комплекса положен блочный принцип и при необходимости блоки можно доращивать новыми техническими средствами.

Блок, состоящий из компьютера, мультимедиапроектора, интерактивной доски и коммутатора управления сетевыми нагрузками, является основным.

Персональный компьютер преподавателя - это центр комплекса. Его характеристики зависят от степени развития компьютерной техники и со временем постоянно улучшаются.

Информация с центрального компьютера комплекса поступает на мультимедийный проектор, имеющий световой поток не менее 2500 лм. Большой световой поток позволяет осуществлять просмотр видеоинформации без затемнения помещения кабинета физики.

Электроснабжение оборудования, входящего в состав АКП «Физика», осуществляется от электросети (220В><50Гц), через коммутатор управления сетевыми нагрузками. Коммутатор обеспечивает включе-ние/выключение и контроль за работой всего оборудования, входящего в комплекс. Управление может осуществляться с любого места кабинета физики, через специальный пульт, работающий на ИК-лучах (электромагнитных волнах инфракрасного диапазона).

Блок традиционного оборудования комплекса включает: графопроектор; комплект лингафонного оборудования с головными телефонами на 32 учащихся, внешним электронным акустическим усилителем и стереофоническими громкоговорителями мощностью не менее 10 Вт, микрофоном.

Блок специального оборудования комплекса включает: цифровую видеокамеру, компьютерный измерительный блок в комплекте с датчиками - систему для измерения параметров физических величин, микрокомпьютерную автоматизированную учебную систему.

Через цифровую видеокамеру визуальная информация поступает в центральный компьютер комплекса, снабженный специальной программой по работе с видеоизображениями. Динамическое изображение можно остановить, увеличить для подробного просмотра. При желании изображение можно изменить, дополнить, сократить. Этапы съемки можно, если это нужно, представить рядом последовательных статических картинок. Длительный процесс можно «сократить по времени» и т.п. Все эти приемы обогащают и совершенствуют методику обучения физике.

Система измерения параметров физических величин предназначена для получения информации о значениях физических параметров в ходе проведения демонстрационных экспериментов. Информация о значениях физических параметров поступаете центральный компьютер, обрабатывается и представляется, по желанию преподавателя, в табличном, графическом или алгебраическом видах. В состав системы входит аналого-цифровой преобразователь и комплект датчиков физико-химических величин. Комплект датчиков включает: датчики измерения кинематических величин (перемещения, скорости, ускорения, частоты колебаний, угла поворота); датчики измерения динамических величин (силы, массы); датчики измерения термодинамических величин (температуры, давления); датчики измерения электромагнитных величин (разности электрических потенциалов, силы электрического тока, электрического сопротивления), датчики измерения оптических величин (освещенности, силы света).

Микрокомпьютерная автоматизированная учебная система (МАУС) рассчитана на обучение одновременно до 32 учащихся, обслуживаемых одним центральным компьютером, и включает сеть планшетных микрокомпьютеров, размещаемых на ученических столах.

АКП «Физика» позволяет вести современное электронное обучение. До недавнего времени электронное обучение могли позволить себе лишь крупные образовательные организации со значительным бюджетом. С развитием технологий электронное обучение становится все более доступным: снижается стоимость аппаратных средств, дорогостоящие программные средства предоставляются как услуги через Интернет, растет информационно-коммуникационная компетентность обучающих и обучающихся. Электронное обучение становится необходимой составляющей любого образовательного процесса.

Инфраструктуру электронного обучения составляют аппаратные и программные средства. При организации электронного обучения эти средства необходимо рассматривать в едином комплексе. Мы будем говорить об аппаратной платформе электронного обучения.

Рассмотрим модель современного макроскопического комплекса аппаратных средств электронного обучения для кабинета физики (рис. 4.1). Она имеет клиент-серверную архитектуру и включает в себя:

  • 1) сервер (физический или виртуальный);
  • 2) телекоммуникационное оборудование;
  • 3) компьютеры-клиенты (могут быть представлены ноутбуками, планшетами, смартфонами и т.п.);
  • 4) средства управления программным обеспечением и ввода данных (клавиатура, мышь, сенсорная панель, пульт, микрофон, видеокамера, документ-камера);
  • 5) средства представления учебной информации (дисплей, проектор, аудиосистема, наушники, интерактивная доска);
  • 6) средства компьютеризации учебного физического эксперимента (датчики: момента времени, температуры, давления, проводимости, освещенности и др., регистраторы данных).

I Компьютерный блок | ,

I (обработка и передача | |

I информации | |

Средства управления программным обеспечением и ввода данных

Средства представления учебной информации

Средства компьютеризации учебного физического эксперимента

Блок ввода-вывода (преобразование информации)

I

I

I

I

I

I

I

I I

I

I

I

I

I

I I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

Рис. 4.1. Комплекс аппаратных средств электронного обучения для кабинета физики

Особо отметим, что элементы комплекса не всегда представлены в виде отдельных аппаратных средств. Например, современный планшет не только играет роль микрокомпьютера, но и имеет в своем составе сенсорный экран, динамики, микрофон, видеокамеру и датчики. То есть является комплексным устройством с серьезным потенциалом использования в электронном обучении в целом, а в электронном обучении физике особенно.

Еще одной особенностью модели является то, что мы не стали выделять в отдельный элемент средства хранения информации. Ранее выделение его в подобных схемах было вполне оправданным. Однако сегодня средства хранения информации (диски, флэш-карты, магнитные накопители) перестали играть ключевую роль в электронном обучении. По сути, они входят в компьютерный блок и являются, в основном, элементом сервера, на котором хранятся все необходимые ресурсы и программное обеспечение. Тем не менее эти средства пока еще распространены и следует их учитывать при организации электронного обучения.

Рассмотрим аппаратный комплекс подробнее.

Первые три модуля комплекса являются составляющими логического блока, который мы назовем «компьютерным блоком». Его задача состоит в работе с информацией, представленной в цифровом виде: ее обработка, передача и хранение.

Основой компьютерного блока является сервер. Сервером называют компьютерное аппаратное или программное обеспечение, предназначенное для обработки информации, поступающей из компьютерной сети (от компьютеров-клиентов). Обычно в качестве аппаратного обеспечения сервера используется компьютер с высокой вычислительной мощностью, большим объемом оперативной памяти и объемным запоминающим устройством. Однако это бывает не всегда, так как выбор сервера основывается на требованиях, которые предъявляются поставленными перед ним задачами, а они часто могут быть не такими высокими, как предполагается изначально. В то же время нельзя и недооценить возможную нагрузку на сервер, так как в этом случае, несмотря на экономию средств, можно столкнуться с гораздо более серьезной проблемой - нехваткой ресурсов. Для поддержания правильной работы сервера требуются компетентные специалисты: техники, системные администраторы, программисты.

По вышеописанным причинам (потребность в гибком масштабировании и низких затратах при качественной работе сервера) небольшие (а иногда и крупные) образовательные организации вместо покупки сервера используют услуги центров обработки данных (ЦОД, дата-центр). Такие центры специализируются на предоставлении серверных мощностей и имеют в своем составе все необходимое оборудование и компетентных специалистов. В этом случае также говорят об использовании «облачных вычислений». Согласно одному из определений, облачные вычисления (cloud computing) - это модель предоставления пользователю удобного доступа по требованию к массиву настраиваемых компьютерных ресурсов, которые могут быть быстро зарезервированы и высвобождены с минимальными действиями со стороны их провайдера. Особенностью «облачных вычислений» является то, что они могут частично или полностью взять на себя вычислительную работу компьютеров-клиентов, что снижает требования к ним, а следовательно, уменьшает стоимость аппаратного комплекса.

Сервер необходим для размещения комплекса информационных систем, обеспечивающих функционал для полноценной работы всех участников образовательного процесса (о них мы поговорим в следующей главе). Облачные технологии в качестве компьютерных ресурсов предлагают как непосредственно серверные мощности, так и прикладные программы. Наглядным примером последних являются сервисы Google Диск и Microsoft Office 365, широко используемые в образовании, так как предоставляют свои услуги для образовательных организаций бесплатно.

Доступ компьютеров-клиентов к серверу осуществляется посредством телекоммуникационного оборудования. С его помощью строится телекоммуникационная сеть - она представлена сетью Интернет и (или) внутренней сетью образовательной организации.

Для построения телекоммуникационной (компьютерной) сети используются проводные и беспроводные технологии. Проводные технологии используются для построения высокоскоростных (используется волоконно-оптический кабель) и среднескоростных (используется витая пара) сетей. Беспроводные технологии используются пока в большей степени для подключения компьютеров и мобильных устройств на небольшом удалении от источника радиосигнала (точки доступа wi-fi), а также для реализации мобильного интернета (GPRS, 3G, 4G). Развитие беспроводных технологий идет быстрыми темпами, и в ближай шем будущем они смогут в большинстве случаев заменить проводные сети, что сделает соединение более надежным и доступным.

Компьютеры-клиенты - это компьютеры участников электронного обучения. С их помощью ведется первичная или полная (без участия сервера) обработка информации, поступающей с устройств ввода, ее хранение и передача на устройства вывода. Для выполнения этих операций компьютер оборудован микропроцессором, оперативной памятью, устройствами ввода-вывода данных с переферийных устройств (на переферийные устройства), устройством хранения информации.

В качестве компьютеров-клиентов могут выступать традиционные компьютеры (системные блоки), ноутбуки (нетбуки), неттопы, планшеты, смартфоны. Характеристики компьютера пользователя (то, что обычно называется словосочетанием «системные требования») зависят от поставленных задач обучения. Более мощные компьютеры, с дорогостоящими видеоадаптерами, требуются для работы с качественной графикой и видеоматериалами. Но в большинстве случаев для организации электронного обучения физике достаточно средств средней ценовой категории или даже эконом-класса. При наличии подходящих программных средств и электронных образовательных ресурсов предпочтительно использовать более удобные, портативные компьютеры: планшеты или ноутбуки.

Основные инструменты обучающего и обучающихся - это периферийные устройства ввода-вывода информации: связующие звенья между людьми и компьютерами. Именно с ними непосредственно взаимодействуют участники образовательного процесса: управляют учебной деятельностью, воспринимают информацию, создают цифровую информацию.

Блок периферийных устройств ввода-вывода мы разделили на три модуля, согласно выполняемым ими функциям в электронном обучении физике:

  • • средства управления программным обеспечением компьютера и ввода информации в компьютер;
  • • средства представления учебной информации;
  • • средства компьютеризации учебного физического эксперимента.

Связь между компьютерным блоком и блоком устройств ввода-вывода организуется напрямую, с помощью кабелей, прилагаемых к устройствам, либо с помощью специального коммуникационного оборудования, обеспечивающего также управление комплексом.

Некоторая условность деления модулей блока устройств ввода-вывода может быть проиллюстрирована на примере микрофона. Традиционно микрофон используется для записи звука или передачи его на расстояние (аудиокоммуникации), то есть используется для ввода информации в компьютер. В последнее время микрофон все чаще используется в качестве устройства управления программным обеспечением - такая функция стала доступна благодаря развитию технологии распознавания речи. Кроме того, получаемую с микрофона информацию о звуке как о физическом процессе можно использовать в учебном физическом эксперименте.

Устройства ввода отправляют в компьютерный блок информацию, передаваемую человеком. Устройства вывода преобразуют цифровую информацию, обработанную компьютером, обратно в формат, воспринимаемый рецепторами человека (зрение, слух, осязание, обоняние, вкус).

Цифровая информация, которой оперирует компьютер, физически представлена с помощью дискретных электрических сигналов. В зависимости от величины напряжения электрического сигнала передается логический «О» или «1». Минимальный объем информации - бит, равен одному разряду в двоичной системе счисления. Одномоментно компьютер обрабатывает один байт информации, равный 8 бит (28 = 256 значений).

Работу устройства ввода информации рассмотрим на примере знакомого всем устройства - клавиатуры. Электрическая схема клавиатуры представляет собой матрицу, каждый элемент которой - это контакт, замыкающийся при нажатии на соответствующую ему клавишу клавиатуры. Замыкание приводит к появлению напряжения на специальном контроллере, постоянно анализирующем состояние клавиш. В зависимости от того, на какой клавише произошло замыкание, на системную плату компьютера передается соответствующий однобайтовый численный код. Поскольку каждая клавиша имеет свой уникальный код, компьютер без труда может «понять», какая именно клавиша была нажата. Далее, компьютерная программа выполняет команду, связанную с нажатием соответствующей клавиши, а результат обычно передается на устройство вывода. Похожий принцип используется и в сенсорных панелях.

Наиболее распространенным устройством представления информации сегодня является жидкокристаллический дисплей. Основными его модулями являются модуль подсветки и жидкокристаллическая матрица. Каж дый пиксель матрицы представляет собой параллельно расположенные прозрачные электроды, создающие электрическое поле в расположенных между ними жидких кристаллах, и два поляризационных фильтра с внешних сторон от электродов (плоскости поляризации фильтров перпендикулярны и при выключенном дисплее не пропускают свет). Жидкие кристаллы могут находиться в некотором числе фаз, промежуточных между твердым и жидким состояниями. Молекулы жидких кристаллов являются стержнеобразными органическими соединениями и находятся в разных ориентациях в этих фазах. При подаче напряжения на электроды молекулы стремятся выстроиться вдоль поля, вследствие чего поляризация пикселя меняется, то есть меняется его прозрачность. При отключении напряжения силы упругости возвращают молекулы в первоначальное состояние. Таким образом, меняя напряжение на электродах жидкокристаллической матрицы, видеоадаптер (видеокарта) компьютера меняет изображение на дисплее. Такой же принцип действия имеют мультимедиапроекгоры с матрицей из жидких кристаллов. Видеоадаптер компьютера выполняет функцию накопителя, обработчика и преобразователя цифровой информации об изображении в аналоговые электрические сигналы, передающиеся на матрицу. Для выполнения последней из перечисленных функций он включает в себя цифроаналоговый преобразователь. Такие преобразователи, а также обратные им аналогоцифровые преобразователи, часто являются частью цепи «человек - компьютер - человек».

Аналого-цифровой преобразователь (АЦП) - это устройство, преобразующее аналоговый электрический сигнал в цифровой (дискретный). АЦП является важным элементом аппаратной платформы электронного обучения физике. Он необходим компьютеру для перевода в цифровой вид информации, поступающей с устройств, регистрирующих различные физические величины. Одним из таких широко применяемых устройств является микрофон. Звуковые волны, распространяемые в среде, вызывают колебания чувствительной мембраны микрофона, которые, в свою очередь, вызывают колебания электрического тока, поступающие на вход звуковой карты компьютера. Звуковая карта снабжена АЦП, преобразующим эти аналоговые колебания в цифровую информацию о звуке (об амплитуде и частоте звуковых колебаний).

При воспроизведении цифрового звука используется обратная схема. Для этого звуковая карта снабжена цифроаналоговым преобразователем (ЦАП), передающим аналоговый электрический сигнал на динамики аудиосистемы.

Устройства ввода данных и устройства представления информации обычно работают в комплексе, благодаря чему возникает интерактивность электронного обучения. Например, мультимедийный проектор в комплексе с сенсорной панелью создают интерактивную доску - мощный инструмент электронного обучения. Как отмечают исследователи методики применения интерактивной доски в обучении физике, она в значительной мере расширяет возможности учителя, дополняет его деятельность качествами, которые отсутствуют при применении меловой или маркерной доски, позволяет развивать методы активного обучения, создавать собственные макеты электронных конспектов уроков, которые могут заполняться обучающимися. Такой комплекс, впрочем, может быть представлен одним, но более дорогостоящим устройством - сенсорным экраном или сенсорным проектором.

Подключив к комплексу аудиосистему, мы сделаем его более мультимедийным, позволив обучающимся воспринимать изначально цифровую информацию не только визуально, но и аудиально. Тем самым увеличим ее восприятие (при условии наличия такой информации). Подключив к комплексу электронную опросную систему обучающихся, мы сделаем его еще более интерактивным.

Электронные опросные системы представляют собой набор пультов для опроса, которые раздаются учащимся, и приемный блок с возможностью подключения к компьютеру. Такая система может найти весьма широкое применение в различных формах учебной деятельности.

Например, объяснение нового материала всегда сопровождается коротким опросом - текущим контролем усвоения знаний обучающимися. Такой опрос должен быть коротким по времени, но в то же время максимально информативным для обучающего. Традиционно эта задача решается лишь в малой степени. С помощью системы опроса информация поступает мгновенно от всех учащихся, может быть отображена на экране, а учитель принимает решение - двигаться дальше или повторить объяснение еще раз. Собираемая информация может быть использована для выставления оценок по итогам урока. Такая система позволяет удерживать внимание учащихся в течение всей лекции. Блиц-опрос - эффективное средство проверки знаний учащихся до начала и после окончания урока. Он позволяет узнать: хорошо ли усвоена изучаемая тема, успешно ли ученики справились с домашним заданием, эффективен ли был урок и т.д. Главными преимуществами такого опроса над другими способами контроля знаний являются: высокая информативность, низкий процент списывания, экономия времени урока, которого всегда не хватает учителю, и экономия времени на проверку, анализ и оценку работ после уроков.

Эффективно дополнить получившийся комплекс документ-камерой. Это устройство позволяет получать цифровое динамическое изображение высокого качества любых объектов, обрабатываемое компьютером или напрямую видеопроектором. Так же как и обычная видеокамера, документ-камера позволяет увеличивать изображение для демонстрации мелких деталей.

Своему названию документ-камера обязана своей первоочередной функции: отображать бумажные документы на экране компьютера или мультимедийного проектора. Традиционно эта функция широко использовалась в обучении и реализовывалась графопроектором. Документ-камера - устройство, значительно более удобное и функциональное. Размеры и вес документ-камеры позволяют любому человеку без труда с ней обращаться, она не «привязана» к экрану, позволяет обрабатывать и сохранять полученное изображение в динамике и статике. Вот некоторые возможности использования документ-камеры в обучении:

  • • простое проецирование текста и рисунков с бумаги на экран, аналогично работе с графопроектором, но используется обычная бумага, а не прозрачная;
  • • использование специальных функций при проецировании: «заморозка» изображения или «заморозка» части изображения, например заголовка, чтобы акцентировать на нем внимание, а в «незамороженной» части изображения работать с материалом;
  • • демонстрация мелких предметов с возможностью увеличения в 22 раза (в некоторых моделях документ-камер), что позволяет сравнить ее с микроскопом;
  • • сохранение цифровых статических изображений и видео для дальнейшей работы с ними: создание электронных презентаций, монтаж и публикация изображений и видео в Интернете, для дистанционной работы с учениками или просто демонстрации на уроке;
  • • внесение правок непосредственно на проецируемом изображении, не исправляя оригинал с помощью интерактивной доски.

С помощью видеокамеры и микрофона можно вести запись занятия, с одновременной трансляцией в сеть. Сегодня эти устройства во многом олицетворяют дистанционные технологии обучения.

Компьютеризация учебного физического эксперимента открывает возможности автоматизации процессов измерения и обработки результатов, а также получения качественно новых результатов при исследовании быстрых процессов и временных зависимостей. Для регистрации и измерения таких физических величин, как температура, давление, ускорение, угловая скорость, проводимость, индукция магнитного поля и др., отечественной и зарубежной учебно-технической промышленностью выпускаются специальные датчики. Далее рассмотрим принцип действия некоторых моделей датчиков.

Наиболее употребляемый в учебном физическом эксперименте, датчик момента времени. В основе его действия лежит оптический принцип. Состояние датчика меняется при перекрытии непрозрачным телом оптической связи (оптической оси) между входящими в состав датчика оптическими элементами, светодиодом и фотодиодом. Светодиод и фотодиод устанавливают друг против друга. В момент прохождения между ними физического объекта оптическая связь обрывается. Как правило, в физических экспериментах используют несколько датчиков (минимум два). Это необходимо для измерения промежутков времени.

Принцип действия датчика угловой скорости такой же, как и у датчика момента времени, отличие в том, что в зазоре оптопары (оптические ворота) вращается диск, разбитый на прозрачные и непрозрачные сектора. В большинстве физических экспериментов ось вращения диска датчика совмещается с осью вращающегося элемента учебной экспериментальной установки.

Датчик угла поворота представляет собой многооборотный резистивный преобразователь (потенциометр), размещаемый в жестком корпусе. На валу резистивного преобразователя закреплена втулка для соединения датчика с элементом учебной экспериментальной установки, совершающим вращательное или колебательное движение.

Датчик температуры представляет собой тонкую трубку, как правило выполненную из нержавеющей стали (щуп), с чувствительным элементом (терморезистором) на конце.

Датчик давления может быть выполнен на основе тензометрического чувствительного элемента или мембранного чувствительного элемента. Датчики давления имеют постоянную времени - не более 0,1 с, что позволяет регистрировать давление в переходных процессах, например в случае адиабатного расширения газа.

Датчик влажности воздуха имеет в своей основе чувствительный элемент, представляющий собой плоский конденсатор, у которого в качестве диэлектрика используется тонкий слой полимера. Изменение относительной влажности воздуха приводит к изменению диэлектрической проницаемости полимера и, как следствие, к изменению емкости конденсатора.

Датчик проводимости предназначен для измерения удельной электрической проводимости различных водных растворов. Действие датчика основано на измерении сопротивления среды между электродами при пропускании переменного тока высокой частотой до 1 кГц.

Датчик индукции постоянного магнитного поля состоит из чувствительного полупроводникового элемента, через который пропускают электрический ток. Физический принцип действия основан на эффекте Холла, который заключается в следующем. Если в полупроводнике движутся заряды, то в магнитном поле они отклоняются силой Лоренца в направлении, перпендикулярном к направлению тока (то есть скорости носителей тока) и индукции магнитного поля. В результате в поперечном сечении полупроводника возникает разность потенциалов, пропорциональная индукции магнитного поля. Эта разность может быть измерена. Чувствительный полупроводниковый элемент размещается в щупе (узкой трубке). Датчик измеряет тангенциальную составляющую вектора индукции магнитного поля, направленную вдоль оси щупа.

Датчик освещенности выполнен на основе полупроводникового фотоэлемента, ЭДС которого зависит от величины падающего на него светового потока.

В основе принципа действия датчика силы лежит изменение сопротивления переменного резистора (реостата), размещенного на одной оси с динамометрической пружиной.

Для передачи информации с аналоговых датчиков в компьютер требуются аналого-цифровые преобразователи. Обычно они являются составной частью так называемых интерфейсов - устройств с набором входов для подключения датчиков и выходом USB для подключения к компьютеру. Существуют также интерфейсы, подключаемые к мобильным компьютерам через Bluetooth или wi-fi, что значительно упрощает проведение лабораторных работ с использованием датчиков. К одному интерфейсу можно подключить сразу несколько датчиков, что позволяет измерять несколько физических величин одновременно.

Основной характеристикой аналого-цифрового преобразователя является частота дискретизации (преобразования аналогового сигнала в дискретный). Чем она выше, тем шире спектр цифрового сигнала, а значит, возможность более детального анализа данных, поступающих с датчика. Массив получаемых данных обычно обрабатывается специальным программным обеспечением, позволяющим получать графики изменения физических величин в реальном времени, сохранять их в памяти компьютера, а также выполнять экспорт массива в формат электронной таблицы для проведения детального анализа.

В качестве примера рассмотрим цифровую лабораторию от американской компании PASCO, выпускающей учебные датчики для естественнонаучных и инженерных дисциплин. В России продукцию этой компании представляет фирма Polymedia. В комплект ученика входят: датчик движения, датчик освещенности, датчик магнитного поля, датчик низкого давления, датчик силы, поворотный датчик движения, датчик температуры, датчик напряжения, два датчика момента времени, стальной зонд для датчика температуры, цифровой преобразователь, кабель-удлинитель. Комплект для учителя помимо вышеперечисленных элементов включает датчик заряда, двухканальный датчик напряжения и датчик альфа/бета/гамма-излучений (счетчик Гейгера). К комплекту датчиков требуется приобрести регистратор данных, позволяющий снимать показания с датчиков, визуализировать данные и проводить их анализ, либо интерфейс для подключения к компьютеру в комплекте с программным обеспечением, либо беспроводной интерфейс для подключения к мобильным устройствам на базе ОС Android или Apple iOS. С помощью таких комплектов можно проводить большое количество лабораторных работ и демонстрационных экспериментов, с интересом воспринимаемых школьниками. Пока, однако, методические описания для проведения лабораторных работ с использованием рассматриваемых датчиков имеются только на английском языке. Тем не менее множество подобных комплектов уже имеется в образовательных организациях России с русскоязычным описанием.

Интерес к использованию портативных информационно-измерительных систем в учебном физическом эксперименте будет возрастать. Это легко объяснимо возможностями комплексного их использования для учебной работы в различных условиях, как в учебных физических лабораториях, так и вне учебных лабораторий, например, в различных выездных мероприятиях (производственных экскурсиях, лабораторных занятиях на природе по изучению экологической обстановки и т.п.). Особенно перспективным является использование портативных систем в самостоятельном учебно-научном физическом эксперименте, что достигается целым рядом удобств, по сравнению с использованием обычных стационарных информационно-измерительных систем.

При выборе портативной информационно-измерительной системы для учебного физического эксперимента следует руководствоваться учебными задачами, в решении которых должны оказать помощь эти средства. Например, следует внимательно изучить состав датчиков, предлагаемых в комплекте (от этого в значительной степени зависит цена комплекта, так как датчики очень дорогие). Не следует приобретать комплекты, имеющие в своем составе датчики, которые в учебном физическом эксперименте не используются. Дело в том, что производители (особенно зарубежные фирмы) стараются изготавливать широкий спектр датчиков, дабы покрыть весь спектр физико-химических величин, измерением которых приходится заниматься в дисциплинах естественно-научного цикла (физике, химии, биологии и т.д.). Российские распространители (дилеры) не всегда учитывают особенности преподавания отдельного предмета (в нашем случае физики) и предлагают для лабораторий физики перенасыщенные комплекты. Например, в составе портативной информационно-измерительной системы, производимой израильской фирмой Fourier system Inc, имеется датчик цветности. Он предназначен для определения концентрации растворов по степени их окрашивания. В учебном физическом эксперименте этот датчик вряд ли найдет применение.

Особое внимание следует обращать на погрешности измерений физических величин. Встречаются случаи, что указанные в инструкциях на систему данные не отвечают действительности. Для проведения учебной экспериментально-исследовательской деятельности студентов требуются приборы с погрешностью не более 5 %.

Наконец, следует обращать внимание на представление информации о результатах измерений и программные возможности их дальнейшей обработки. Обратите внимание, все ли физические величины отображаются на экране в шкалах, соответствующих международной системе.

Перспективы развития компьютеризированного физического учебного эксперимента связаны в первую очередь с повышением его доступности для всех участников учебного процесса. Особенно важен этот факт для дистанционной формы обучения. Обучение физике в домашних условиях серьезно снижает возможности обучающегося по проведению эксперимента, вследствие отсутствия необходимого оборудования. Однако уже сейчас эта проблема активно решается с помощью нового поколения мобильных компьютеров, представленного смартфонами. Современный смартфон (например, семейства НТС One) содержит в себе набор устройств, способных измерять ускорение, угловую скорость, индукцию магнитного поля, освещенность, расстояние, уровень шума.

Завершая описание комплекса аппаратных средств электронного обучения физике, подчеркнем, что в его основе лежит принцип вариативности, позволяющий изменять составы модулей в зависимости от условий конкретного образовательного процесса и методик, используемых в нем.

Если взглянуть на процесс организации и проектирования электронного обучения, то сперва определяются основные задачи обучения, его масштабность, затем для их решения подбираются электронные образовательные ресурсы и другие программные средства, а затем строится аппаратная платформа. Таким образом, несмотря на то что аппаратный комплекс является, на первый взгляд, более фундаментальным, нюансы его проектирования должны определяться на последнем этапе.

 
Посмотреть оригинал
< Пред   СОДЕРЖАНИЕ ОРИГИНАЛ   След >