Механизм нарушения электрической изоляции

Вещество будет являться изолятором (диэлектриком), а материал называться изоляционным, если при размещении его между электродами и приложении к электродам разности электрических потенциалов через него не протекает электрический ток, или он очень мал (10~19—10~16 А). Электрический ток не протекает из-за отсутствия в диэлектрике (в отличие от металлов) свободных электронов. Все электроны в диэлектрике сильно связаны с ядрами его атомов (молекул). Для разрыва этой связи нужна большая энергия. Если в диэлектрике появится свободный электрон, например, под действием космического излучения, то, двигаясь в сильном электрическом поле до соударения с атомом, он может набрать достаточную для его ионизации энергию с образованием еще одного электрона.

На электроны действует именно электрическое поле, поэтому главным фактором, определяющим развитие разряда в промежутке, является напряжённость электрического поля, а не напряжение на промежутке. Средняя напряжённость электрического поля в промежутке — это частное от деления напряжения на промежутке на расстояние между электродами. В реальных конструкциях высокого напряжения распределение электрического поля вдоль промежутка существенно неравномерно. Максимальная напряжённость электрического поля (вблизи поверхности электрода с наименьшим радиусом кривизны) может значительно превышать среднюю напряжённость.

Именно в области максимальной напряжённости поля формируется лавина электронов. При выполнении условия её перехода в разряд с высокой электрической проводимостью канала происходит полный пробой промежутка.

Собственно, исследование механизмов и разработка способов, затрудняющих образование лавины электронов и переход ее в полный пробой промежутка, и есть предмет техники высоких напряжений в части обеспечения электрической прочности изоляции оборудования и линий электропередачи. Эти исследования привели к появлению всех используемых сегодня видов изоляции.

Из всех видов диэлектриков самым доступным и дешевым является атмосферный воздух. Но он же обладает наименьшей электрической прочностью.

Радикальный путь затруднения развития лавины — повышение давления газа и пропорционального уменьшения длины свободного пробега электрона. Пропорционально будет увеличиваться и напряжение между электродами (соответственно напряженность электрического поля в промежутке), необходимое для набора электроном достаточной для ионизации энергии. Поэтому в современных воздушных выключателях высокого напряжения давление воздуха достигает 4,0 и более 6,0 МПа.

Наоборот, удаление газа из электрического аппарата (вакуумирование) приводит к тому, что даже появившийся начальный электрон на своем пути от электрода к электроду не встречает молекул газа, которые он мог бы ионизировать и начать образовывать лавину электронов. Отсюда появилась идея вакуумной изоляции — основы современных вакуумных выключателей, разрядников, ускорителей элементарных частиц.

Принципиально другой путь препятствия развитию лавины электронов — «связать» уже возникший начальный электрон, т.е. захватить его молекулой при первом же столкновении с ней. Этот путь реализуется использованием в качестве газовой изоляции так называемых электроотрицательных (захватывающих отрицательно заряженные электроны) газов. Наибольшее распространение для этой цели получил элегаз (сокращенно от «электрический газ») — шестифтористая сера (8Е6). Его электроотрицательные свойства настолько высоки, что там, где для обеспечения необходимой электрической прочности давление воздуха должно быть 4,0 МПа, достаточно давление элегаза в 0,5—0,6 МПа, что резко упрощает конструкцию аппаратов. Элегаз обладает и целым рядом других преимуществ — химическая инертность, устойчивость к электрическим разрядам, блестящими дугогасящими и хорошими теплоотводящими свойствами, низкой температурой сжижения перед другими, даже более электроотрицательными газами. Это позволяет заменять открытые распределительные устройства (ОРУ) на комплектные распределительные устройства с элегазовой изоляцией (КРУЭ) или заменять воздушные линии электропередачи на элегазо- вые кабели высокого напряжения. Их габариты при этом уменьшаются на порядки.

К сожалению, технико-экономические характеристики КРУЭ и силовых кабелей, в основном стоимость, оказываются все еще в большинстве случаев (кроме их использования в крупных городах и в некоторых специальных ситуациях) неконкурентоспособными по сравнению с ОРУ.

Предельный случай уменьшения длины свободного пробега электрона — переход к жидким и твердым диэлектрикам. Идеальная — «внутренняя» — электрическая прочность этих диэлектриков очень высока — десятки миллионов вольт на 1 см. Поэтому внутренняя изоляция силовых трансформаторов, кабелей, измерительных трансформаторов тока и напряжения сегодня выполняется на основе жидких или твердых диэлектриков или их комбинации.

К сожалению, «внутренняя» электрическая прочность чистых жидких и твердых диэлектриков недостижима в реальных условиях из-за наличия в объеме диэлектриков и на поверхности электродов микродефектов — газовых и проводящих микровключений, влаги, шероховатостей на поверхности электродов. Это приводит к началу развития лавин электронов при напряженностях электрического поля в 100—500 кВ/см.

Разбиение жидкой и твердой изоляции на тонкие слои уменьшает размер дефектов и вероятность их совпадения. Поэтому реальная изоляция изготавливается из тонких слоёв бумаги или плёнок синтетических материалов, пропитываемых трансформаторным или конденсаторным маслом, синтетическими жидкостями, элегазом под высоким давлением. Чаще

Зависимость времени пробоя / от приложенного напряжения 6п|) для образцов (

Рис. 15.1. Зависимость времени пробоя / от приложенного напряжения 6гп|) для образцов ((а) и многослойной (б) пленочной изоляцией

Зависимость времени пробоя / от приложенного напряжения 6п|> для образцов из полиэтилена в воздухе (а) и пропитанного минеральным маслом (б)

Рис. 15.2. Зависимость времени пробоя / от приложенного напряжения 6гп|> для образцов из полиэтилена в воздухе (а) и пропитанного минеральным маслом (б)

всего используется бумажно-масляная изоляция, как наиболее дешевая. Синтетические жидкости или элегаз применяются, в основном, при требовании обеспечить негорючесть изоляции. Эффективность разделения изоляции на тонкие слои и её пропитки иллюстрируется на рис. 15.1 и 15.2.

Если по условиям отвода тепла от токоведущих частей оборудования требуется наличие больших по ширине (до нескольких сантиметров) каналов для циркуляции охлаждающей жидкости, в которых лавина может развиваться и даже переходить в канал разряда, то на пути развития канала ставят барьер из высокопрочного диэлектрика. Такая изоляция называется маслобарьерной.

 
Посмотреть оригинал
< Пред   СОДЕРЖАНИЕ ОРИГИНАЛ   След >