Меню
Главная
Авторизация/Регистрация
 
Главная arrow Физика arrow Физика сегнетоэлектриков: современный взгляд

1.6. Замечание от редакторов

В начале этой главы мы описали стратегию выбора разделов для включения в эту книгу, задача которой состоит в том, чтобы высветить наиболее важные достижения по сравнению с классическим трудом Лайнса и Гласса [1]. Здесь мы хотели бы добавить, что из-за практически экспоненциального роста объема научной информации в рамках одной книги невозможно дать оценку всем относящимся к теме работам, даже учитывая сделанной выбор. Во многих случаях нам удалось включить только ссылки на оригинальные работы, к которым читателю следует обратиться за более полной информацией и пониманием. Однако неизбежны случаи, когда упоминание значимых работ будет непреднамеренно отсутствовать. Мы приносим свои извинения авторам этих статей и статей, которые были опубликованы во время работы над книгой и не были включены, и стимулируем читателя, заинтересовавшегося определенной темой, продолжить свои исследования литературы за пределами предоставленных стартовых точек.

Литература

  • 1. М. Е. Lines, А. М. Glass. Principles and Applications of Ferroelectrics and Related Materials (Clarendon, Oxford 1977). Имеется перевод: M. Л айне, А. Гласс. Сегне- тоэлектрики и родственные им материалы. М.: «Мир», 1981.
  • 2. Т. Mitsui, S. Nomura, М. Adachi, J. Harada, T. Ikeda, E. Nakamura, E. Sawaguchi, T. Shigenari, Y. Shiozagi, J. Tatsuzaki, K. Tovoda, T. Yamada, K. Gesi, Y. Marita, M. Marutake, T. Shiosaki, K. Wakino. Oxides, Landolt Bornstein: Numerical Data and Functional Relationships in Science and Technology, Group III, vol. 16, Part A (Springer, Berlin 1981).
  • 3. E. Nakamura, M. Adachi, Y. Akishige, K. Deguchi, J. Harada, T. Ikeda, M. Oku- yama, E. Sawaguchi, Y. Shiozaki, K. Toyoda, T. Yamada, K. Gesi, T. Hikita, Y. Makita, T. Shigenari. I. Tatsuzaki, T. Yahi. Oxides, Landolt Bornstein: Numerical Data and Functional Relationships in Science and Technology, Group III, vol. 28 (Springer, Berlin 1981).
  • 4. С. B. Sawyer, С. H. Tower. Rochelle salt as a dielectric. Phys. Rev. 35, 269 (1930).
  • 5. M. Dawber, I. Farnan, J. F. Scott. A classroom experiment to demonstrate ferroelectric hysteresis. Am. J. Phys. 71, 819 (2003).
  • 6. M. Dawber, К. M. Rube, J. F. Scott. Physics of thin film ferroelectric oxides. Rev. Mod. Phvs. 77, 1083 (2005).
  • 7. D. J. Kim, J. Y. Jo, Y. S. Kim, Y. .1. Chang, .1. S. Lee, J.-G. Yoon, T. K. Song, T. W. Noh. Polarization relaxation induced I>y a depolarization field in ultrathin ferroelectric ВаТЮз capacitors. Phys. Rev. Lett. 95, 237602 (2005).
  • 8. W. Cochran. Crystal stability and the theory of ferroelectricity. Adv. Phys. 9, 387 (1960).
  • 9. П. Андерсон. В сб.: Физика диэлектриков (под ред. Г. И. Сканави). Изд-во АН СССР, М.: 1960, с. 290 296.
  • 10. A. A. Sirenko, С. Bernhard, A. Golnik, А. М. Clark, Л. Н. Нао, X. X. Xi. Soft-mode hardening in SrTiOa thin films. Nature 404. 373 (2000).
  • 11. P. M. Gehring, S. Wakimoto, Z. G. Ye, G. Shirane. Soft mode dynamics above and below the Burns temperature in the relaxor Pb(Mg1/3Nb2/3)0:i. Phys. Rev. Lett. 87, 277601 (2001).
  • 12. S. C. Abrahams. Structurally based predictions of ferroelectricity in seven inorganic materials with space group Pba‘2 and two experimental confirmations. Acta Crystallogr. В 45, 228 (1989).
  • 13. E. Kroumova, M. I. Aroyo, J. M. Perez-Mato. Prediction of new displacive ferroelectrics through systematic pseudosymmetry search: Results for materials with Pba2 and Pmc‘2 symmetry. Acta Crystallogr. В 58, 921 (2002).
  • 14. C. Capialls, M. I. Aroyo, J. M. Perez-Mato. Search for new Pna‘2 ferroelectrics. Ferroelectrics 301, 203 (2004).
  • 15. К. M. Rabe. Lattice Instabilities of Complex Perovskite Oxides from First Principles. Computer Simulation Studies in Condensed Matter Physics XVI, Springer Proceedings in Physics (Springer, New York 2003).
  • 16. R. Comes, M. Lambert, A. Guinier. The chain structure of ВаТЮз and KNbOs. Solid State Connnun. 6, 715 (1968).
  • 17. T. Egami, S. Teslic, W. Dmowski, D. Viehland, S. Vakhrushev. Local atomic structure of relaxor ferroelectric solids determined by pulsed neutron and X-ray scattering. Ferroelectrics 199. 103 (1997).
  • 18. N. Sicron, B. Ravel, Y. Yacobv, E. A. Stern, F. Dogan, .1. J. Rehr. Nature of the ferroelectric phase transition in РЬТЮз. Phys. Rev. В 50, 13168 (1994).
  • 19. P. Ghosez. Microscopic properties of ferroelectric oxides from first principles: Selected topics (Troisieme Cycle de la Physique en Suisse Romande, Lausanne 2002).

URL: http://uww.phythema.ulg.ac.be/Books/Cours_Ferro.Ghosez.pdf

  • 20. L. Eyraud. Dicilectriques Solides, Anisoptropes et FerroelectriciU: (Gauthier-Villars, Paris 1967).
  • 21. G. H. Kwei, A. C. Lawson, S. .1. L. Billinge, S. W. Cheong. Structures of the ferroelectric phases of barium titanate. J. Phys. Chem. 97, 2368 (1993).
  • 22. W. Zhong, D. Vanderbilt, К. M. Rabe. Phase transitions in ВаТЮз from first principles. Phys. Rev. Lett. 73, 1861 (1994).
  • 23. С. H. Ahn, К. M. Rabe, J.-M. Triscone. Ferroelectricity at the nanoscale: Local polarization in oxide thin films and heterostructures. Science 303, 488 (2004).
  • 24. A. W. Hewat. Soft modes and the structure, spontaneous polarization and Curie constants of perovskite ferroelectrics: Tetragonal potassium niobate. J. Phys. C: Solid State Phys. 6, 1074 (1973).
  • 25. M. Itoh, R. Wang, Y. Inaguma, T. Yamaguchi, Y. J. Shan, T. Nakamura. Ferroelectricity induced by oxygen isotope exchange in strontium titanate perovskite. Phys. Rev. Lett. 82, 3540 (1999).
  • 26. P. A. Fleury, J. F. Scott, J. M. Worlock. Soft phonon modes and the 110 К phase transition in SrTiO.j. Phys. Rev. Lett. 21, 16 (1968).
  • 27. G. A. Samara, B. Morosin. Anharmonic effects in КТаОз: Ferroelectric mode, thermal expansion and compressibility. Phys. Rev. В 8, 1256 (1973).
  • 28. S. Е. Park, Т. R. Shrout. Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J. Appl. Phvs. 82, 1804 (1997).
  • 29. G. A. Samara. Pressure and temperature dependence of the dielectric properties and phase transitions of the ferroelectric perovskites: РЬТЮз and BaTiO.j. Ferroelectrics 2, 277 (1971).
  • 30. Z. Wu, R. E. Cohen. Pressure-induced anomalous phase transitions and colossal enhancement of piezoelectricity in PbTiO.j. Phys. Rev. Lett. 95, 196804 (2005).
  • 31. I. A. Kornev, L. Bellaiche, P. Bouvier, P. E. Janolin, B. Dkhil, J. Kreisel. Ferroelectricity of perovskites under pressure. Phys. Rev. Lett. 95, 196804 (2005).
  • 32. T. Ishidate, S. Abe, H. Takahashi, N. Moeri. Phase diagram of ВаТЮз. Phys. Rev. Lett. 78. 2397 (1997).
  • 33. D. A. Terine, X. X. Xi, Y. L. Li, L. Q. Chen, A. Soukiassian, M. H. Zhu, A. R. James,

J. Lettieri, D. G. Seldom, W. Tian, X. Q. Pan. Absence of low-temperature phase transitions in epitaxial BaTiO.) thin films. Phys. Rev. В 69, 174101 (2004).

  • 34. .1. H. Haeni, P. Irvin, W. Chang, R. Uecker, P. Relche, Y. L. Li, S. Choudhury, W. Tian, M. E. Hawley, B. Craigo, A. K. Tagantsev, X. Q. Pan, S. K. Streiffer, L. Q. Chen, S. W. Kirchoefer, .1. Levy, D. G. Seldom. Room-temperature ferroelectricity in strained SrTiO:). Nature 430, 758 (2004).
  • 35. A. Antons, J. B. Neaton, К. M. Rabe, D. Vanderbilt. Tunability of the dielectric response of epitaxially strained SrTiO:) from first principles. Phys. Rev. В 71, 024102 (2005).
  • 36. К. J. Choi, M. Biegalski, Y. L. Li, A. Sharan, J. Schubert, R. Uecker, P. Reiche, Y. B. Chen, X. Q. Pan, V. Gopalan, L.-Q. Chen, D. G. Seldom, С. B. Eom. Enhancement of ferroelectricity in strained BaTiO.-) thin films. Science 306, 1005 (2004).
  • 37. C. Menoret, J. M. Kiat, B. Dkhil, M. Dunlop, H. Dammak, O. Hernandez. Structural evolution and polar order in Srj_*Ba®TiO:). Phys. Rev. В 65, 224104 (2002).
  • 38. В. Noheda, D. E. Cox, C. Shirane, J. A. Gonzalo, L. E. Cross, S. E. Park. A monoclinic ferroelectric phase in the Pb(Zri_2,TiI)0;j solid solution. Appl. Phys. Lett. 74. 2059 (1999).
  • 39. B. Jaffe, W. R. Cook, H. Jaffe. Piezoelectric Ceramics (Academic Press, London 1971), p. 136.
  • 40. B. Noheda, D. E. Cox. Bridging phases at the morphotropic boundaries of lead oxide solid solutions. Phase Transitions 79, 5 (2006).
  • 41. L. Bellaiche, A. Garcia, D. Vanderbilt. Finite-temperature properties of Pb(Zri _3Ti, )0:j alloys from first principles. Phys. Rev. Lett. 84, 5427 (2000).
  • 42. D. E. Cox, B. Noheda, G. Shirane, Y. Uesu, K. Fujishiro, Y. Yarnada. Universal phase diagram for high-piezoelectric perovskite systems. Appl. Phys. Lett. 79, 400 (2001).
  • 43. В. P. Burton, E. Cockayne, S. Tinte, U. V. Waghmare. First-principles-based simulations of relaxor ferroelectrics. Phase Transitions 79, 91 (2006).
  • 44. R. Machado, M. G. Stachiotti, R. L. Migoni, A. H. Tera. First-principles determination of ferroelectric instabilities in Aurivillius compounds. Phys. Rev. В 70, 214112 (2004).
  • 45. J. М. Perez-Mato, М. Aroyo, A. Garcia, Р. Blaha, К. Schwarz, J. Schweifer,

К. Parlinski. Competing structural instabilities in the ferroelectric Aurivillius compounds. Phys. Rev. В 70, 214111 (2004).

  • 46. C. Araujo, .1. D. Cuchiaro, L. D. McMillan, M. C. Scott, J. F. Scott. Fatigue-free ferroelectric capacitors with platinum electrodes. Nature 374, 627 (1995).
  • 47. M. G. Stachiotti, C. O. Rodriguez, C. Ambrosch-Draxl, N. E. Christensen. Electronic structure and ferroelectricity in Sr ВЬ Таг Од. Phys. Rev. В 61, 14434 (2000).
  • 48. J. H. Haem, C. D. Theis, D. G. Seldom, W. Tian, X. Q. Pan, H. Chang, I. Takeuchi, X. D. Xiang. Epitaxial growth of the first five members of the Srn+iTb.Oan+i Ruddlesden-Popper homologous series. Appl. Phys. Lett. 78, 3292 (2001).
  • 49. C. J. Fennie, К. M. Rabe. Structural and dielectric properties of Sr^TiOi from first principles. Phys. Rev. В 68, 184111 (2003).
  • 50. C. J. Fennie, К. M. Rabe. First-principles investigation of ferroelectricity in epitaxially strained РК/ГЮз. Phys. Rev. В 71, 100102 (2005).
  • 51. О. Dieguez, D. Vanderbilt. First-principles calculations for insulators at constant polarization. Phys. Rev. Lett 96. 056401 (2006).
  • 52. .1. F. Scott, M. Zhang, R. B. Godfrey, C. Araujo, L. McMillan. Raman spectroscopy of submicron KNO.j films. Phys. Rev. В 35, 4044 (1987).
  • 53. J. F. Scott. Phase transitions in very thin (< 100 nrn) films of ceramic Ba L_.cSr„ Ti();s (BST) and single-crystal BaTiO.j (2005):

URL: http//www.mri.psu.edu/conferences/ferro2005/Ferro05AbstractBook.pdf

  • 54. H. M. Lu, J. R. Hardy. First principles study of phase transitions in KNOs. Phys. Rev. В 44. 7387 (1991).
  • 55. В. В. van Aken, T. T. Palstra, A. Filippetti, N. A. Spaldin. The origin of ferroelectricity in magnetoelectric YMnO.3. Nature Mater. 3, 164 (2004).
  • 56. C. J. Fennie, К. M. Rabe. Ferroelectric transition in YMnO.i from first principles. Phys. Rev. В 72, 100103 (2005).
  • 57. M. A. Subramanian, T. He, J. Z. Chen, N. S. Rogado, T. G. Calvarese, A. W. Sleight. Giant room-temperature magnetodielectric response in the electronic ferroelectric LuFe^CH. Adv. Mater. 18, 1737 (2006).
  • 58. C. D. Batista. Electronic ferroelectricity in the Falicov-Kimball model. Phys. Rev. Lett. 89, 166403 (2002).
  • 59. P. Farkasovsky. Falicov-Kimball model and the problem of electronic ferroelectricity. Phys. Rev. В 65, 081102 (2002).
  • 60. T. Portengen, T. Ostreich, L. .1. Sham. Theory of electronic ferroelectricity, Phys. Rev. В 54. 17452 (1996).
  • 61. N. Ikeda, S. Nohdo, Y. Yamada, E. Takahashi, K. Kohn. Charge ordering of LuFe204 observed by an anomalous X-ray dispersion. J. Korean Phys. Soc. 32, S165 (1998).
  • 62. N. Ikeda, M. Tanaka, H. Kito, S. Sasaki, Y. Yamada. Synchrotron observation of the charge ordering and spontaneous polarization in LuFe2C>4. Ferroelectrics 222, 227 (1999).
  • 63. N. Ikeda, K. Kohn, N. Myouga, E. Takahashi, H. Kitoli, S. Takeawa. Charge frustration and dielectric dispersion in LuFe204. J. Phys. Soc. Jpn. 69, 1526 (2000).
  • 64. N. Ikeda, R. Mori, K. Kohn, M. Mizumaki, T. Akao. Dielectric and structure properties of charge competing system YFe2C>4. Ferroelectrics 272, 309 (2002).
  • 65. N. Ikeda, R. Mori, S. Mori, K. Kohn. Structure transition and charge competition on YFe-204. Ferroelectrics 286. 175 (2003).
  • 66. N. Ikeda, II. Ohsumi, K. Ohwada, K. Ishii, T. Inarni, K. Kakurai, Y. Murakami, K. Yoshii, S. Mori, Y. Horibe, H. Kito. Ferroelectricity from iron valence ordering in the charge-frustrated system LuFe204. Nature 436, 1136 (2005).
  • 67. J. P. Attfield, A. M. T. Bell, L. M. Rodriguez-Martinez, .1. M. Greneche, R. J. Cernik, .1. F. Clarke, D. A. Perkins. Electrostatically driven charge-ordering in РегОВОз. Nature 396, 655 (1998).
  • 68. N. Suda, K. Kohn, S. Nakamura. Dielectric and magnetic properties of a mixed valence oxide Fe2B04. Ferroelectrics 286, 155 (2003).
  • 69. J. Rivas, B. Rivas-Murias, A. Fondado, .1. Mira, M. A. Senaris-Rodriguez. Dielectric response of the charge-ordered two-dimensional nickelate Lai.sSro.sNiCTi. Appl. Phys. Lett. 85. 6224 (2004).
  • 70. T. Tybell, C. II. Aim, J.-M. Triscone. Ferroelectricity in thin perovskite films. Appl. Phys. Lett. 75, 856 (1999).
  • 71. P. Ghosez, К. M. Rabe. A microscopic model of ferroelectricity in stress-free РЬТЮз ultrathin films. Appl. Phys. Lett. 76, 2767 (2000).
  • 72. M. Dawber, P. Chandra, P. B. Littlewood, .1. F. Scott. Depolarization corrections to the coercive field in thin-film ferroelectrics. J. Phys.: Condens. Matter 15, 393 (2003).
  • 73. J. Junquera, P. Ghosez. Critical thickness for ferroelectricity in perovskite ultrathin films. Nature 422, 506 (2003).
  • 74. V. Nagarajan, J. Junquera, J. Q. He, C. L. Jia, R . Waser, K. Lee, Y. K. Kim, S. Baik, T. Zhao, R. R a mesh, P. Ghosez, К. M. Rabe. Scaling of structure and electrical properties in ultrathin epitaxial ferroelectric heterostructures. .1. Appl. Phvs. 100. 51609 (2006).
  • 75. I. Kornev, H. Fu, L. Bellaiche. Ultrathin films of ferroelectric solid solutions under a residual depolarizing field. Phys. Rev. Lett. 93, 196104 (2004).
  • 76. P. Muralt. Ferroelectric thin films for micro-sensors and actuators: A review. .1. Micromech. Microeng. 10, 136 (2000).
  • 77. J. F. Scott, С. A. P. De Araujo. Ferroelectric memories. Science 246. 1400 (1989).
  • 78. W. Eerenstein, N. D. Mathur, J. F. Scott. Multiferroic and magnetoelectric materials. Nature 442, 759 (2006).
  • 79. J. F. Scott. Ferroelectric Memories (Springer, Berlin 2000).
  • 80. A. Roelofs, T. Schneller, K. Szot, R. Waser. Towards the limit of ferroelectric nanosized grains. Nanotechnology 14, 250 (2003).
  • 81. A. Rudiger, T. Schneller, A. Roelofs, S. Tiedke, T. Schmitz, R. Waser. Nanosize ferroelectric oxide tracking down the superparaelectric limit. Appl. Phys. A 80, 1247 (2005).
  • 82. C. Lichtensteiger, J.-M. Triscone, J. Junquera, P. Ghosez. Ferroelectricity and tetragonality in ultrathin PbTiOs films. Phys. Rev. Lett. 94, 047603 (2005).
  • 83. D. D. Fong, G. B. Stephenson, S. K. Streiffer, J. A. Eastman, O. Auciello, P. II. Fuoss, C. Thompson. Ferroelectricity in ultrathin perovskite films. Science 304, 1650 (2004).
  • 84. S. Tideke, T. Schmitz, K. Prime, A. Roelofs, T. Schneller, U. Kali, R. Waser, C. S. Ganpule, V. Nagarajan, A. Stanishevsky, R. Ramesh. Direct hysteresis measurements of single nanosized ferroelectric capacitors contacted with an atomic force microscope. Appl. Phys. Lett. 79, 3678 (2001).
  • 85. M. Alexe, C. Harnagea, U. Gosele. Patterning and switching of nanosize ferroelectric memory cells. Appl. Phys. Lett. 75, 1793 (1999).
  • 86. M. Alexe, D. Hesse. Self-assembled nanoscale ferroelectrics. J. Mater. Sci. 41, 1 (2006).
  • 87. Y. Luo, I. Szafraniak, N. D. Zakharov, V. Nagarajan, M. Steinhart, R. B. Wehrspohn. .1. H. Wendorff, R. Rarnesh, M. Alexe. Nanoshell tubes of ferroelectric lead zirconate titanate and barium titanate. Appl. Phys. Lett. 83, 440 (2003).
  • 88. F. D. Morrison, L. Ramsay, J. F. Scott. High aspect ratio piezoelectric strontiuin- bismuth-tantalate nanotubes. J. Phys.: Condens. Matter 15, L527 (2003).
  • 89. M. M. Saad, P. Baxter, R. M. Bowman, J. M. Gregg, F. D. Morrison, J. F. Scott. Intrinsic dielectric response in ferroelectric nano-capacitors. J. Phys.: Condens. Matter 16, L451 (2004).
  • 90. M. M. Saad, P. Baxter, A. Schilling, T. Adams, X. Zhu, R. M. Bowman, J. M. Gregg, P. Zubko, F. D. Morrison, J. F. Scott. Exploring the fundamental effects of miniaturization on ferroelectrics by focused ion beam processing of single crystal material. J. Physique IV 128, 63 (2005).
  • 91. A. Schilling, T. B. Adams, R. M. Bowman, J. M. Gregg, G. Catalan, .7. F. Scott. Scaling of domain periodicity with thickness measured in BaTiOs single crystal lamellae and comparison with other ferroics. Phys. Rev. В 74, 024115 (2006).
  • 92. С. H. Aim, J.-M. Triscone, J. Mannhart. Electric field effect in correlated oxide systems. Nature 424, 1015 (2003).
  • 93. P. Paruch, T. Tybell, J.-M. Triscone. Nanoscale control of ferroelectric polarization and domain size in epitaxial Pb(Zro.2Tio.s)03 thin films. Appl. Phys. Lett. 79, 530 (2001).
  • 94. A. K. S. Kumar, P. Paruch, J.-M. TViscone, W. Daniau, S. Ballandras, L. Pellegrino, D. Маггё, T. Tybell. High-frequency surface acoustic wave device based on thin-film piezoelectric interdigital transducers. Appl. Phys. Lett. 85, 1757 (2004).
  • 95. K. S. Takahashi, M. Gabay, D. Jaccard, K. Shibuya, T. Ohnishi, M. Lippmaa, ,L- M. Triscone. Local switching of two-dimensional superconductivity using the ferroelectric field effect. Nature 441, 195 (2006).
  • 96. Б. А. Струков. Электрокалорический эффект в монокристаллическом триглиц- инсульфате. Кристаллография 11, 892 (1966).
  • 97. В. A. Tuttle, D. A. Payne. The effects of microstructure on the electrocaloric properties of Pb(Zr,Sn,Ti)0:s ceramics. Ferroelectrics 37, 603 (1981).
  • 98. A. S. Mischenko, Q. Zhang, J. F. Scott, R. W. Whatmore, N. D. Mathur. Giant electrocaloric effect in thin-film PbZr0.95Ti0.05O3. Science 311, 1270 (2006).
  • 99. J. F. Scott. Applications of modern ferroelectrics. Science 315, 954 (2007).

Дополнительная литература

  • 1. В. Гинзбург. О диэлектрических свойствах сегнетоэлектриков и титаната бария. ЖЭТФ 15, 739 (1945).
  • 2. В. Л. Гинзбург. О поляризации и пьезоэффекте титаната бария вблизи точки сегнетоэлектрического перехода. ЖЭТФ 19, 36 (1949).
  • 3. В. Л. Гинзбург. Теория сегнетоэлектрических явлений. Успехи физ. наук 38, 490 (1949).
  • 4. М. Dawber, N. Stucki, С. Lichtensteiger, S. Gariglio, P. Ghosez, J.-M. Triscone. Tailoring the properties of artificially layered ferroelectric superlattices. Adv. Mater. 19, 4153 (2007).
  • 5. L. Liu, T. Ning, Y. Ren, Z. Sun, F. Wang, W. Zhou, S. Xie, L. Song, S. Luo, D. Liu, J. Shen, W. Ma, Y. Zhou. Synthesis, characterization, photoluminescence and ferroelectric properties of РЬТЮз nanotube arrays. Mater. Sci. Eng. В 149, 41 (2008).
  • 6. E. Г. Максимов. Теоретические исследования сегнетоэлектрического перехода. Успехи физ. наук 179, 639 (2009).
 
Посмотреть оригинал
< Пред   СОДЕРЖАНИЕ ОРИГИНАЛ   След >
 

Популярные страницы