Биотехнологии в производстве мясных и рыбных продуктов

Технология производства многих современных мясопродуктов обязательно включает в себя молочнокислое брожение. В сырокопченых колбасах и в рассолах для окороков, грудинки, корейки молочнокислые бактерии подавляют рост гнилостных микроорганизмов и участвуют в формировании вкуса и аромата готового продукта. В мясопродукты, требующие бактериальной ферментации, обычно добавляют закваску, содержащую специально отобранные штаммы стрептококков, лактобацилл и недиококков. В этом случае на упаковке должно быть указано, что в состав продукта входят бактериальные культуры.

С целью размягчения мяса, облегчения его обработки широко применяются ферментные препараты протеолитического действия. Использование ферментных препаратов в промышленных масштабах связано с технологическими задачами равномерного распределения ферментов при внесении их в мясо. Применяются следующие способы обработки мяса протеолитическими ферментами:

  • - прижизненное введение препарата путем инъекций;
  • - внутримышечное шприцевание мясной туши;
  • - обработка поверхности мяса путем разбрызгивания раствора фермента или нанесения порошкообразных препаратов на поверхность мяса;
  • - погружение мяса в раствор ферментов после механического рыхления;
  • - восстановление дегидратированного сублимацией мяса в растворе ферментов.

Каждый из этих способов имеет свои преимущества и недостатки.

Введение раствора ферментного препарата через кровеносную систему путем инъекций в организм животного при жизни. Прижизненное введение препарата обеспечивает его равномерное распределение и хороший размягчающий эффект, сокращает время созревания, увеличивает количество мяса, пригодного для жарения. Вместе с тем, следует отметить, что при введении достаточно высоких доз препарата возникает анафилактический шок и нарушение нормальных функций организма.

Обработка поверхности мяса путем разбрызгивания раствора фермента или нанесения порошкообразных препаратов на поверхность мяса. Способ имеет ограниченное применение ввиду неравномерного преобразования белковых структур: мясо на поверхности размягчается слишком сильно, а внутри - недостаточно.

Внутримышечное шприцевание мясной туши. Наибольший эффект получен при введении препаратов ферментов в мышечную ткань многократными уколами. При этом эффективность способа значительно повышается при введении ферментов под давлением вместе со стерильным вакуумом или азотом. Газы, разрыхляя структуру мышечной ткани, способствуют лучшему распределению фермента между клетками. Используется еще один способ - безыгольный - введение препаратов в мясо иод сверхвысоким давлением (200 • 103 Па).

Погружение мяса в раствор ферментов после механического рыхления. Простое погружение мяса в ферментный раствор малоэффективно, поскольку в данном случае наибольшим изменениям подвергается лишь поверхность мяса (наступает полный лизис структур мышечной ткани), в то время как в глубоких слоях изменения минимальны. Сочетание предварительного механического рыхления с последующим погружением мяса в раствор ферментов, а также «массирование» мяса в ферментном растворе дают хорошее качество мяса и малые потери влаги при его обработке.

Хорошие результаты дает восстановление дегидратированного (обезвоженного) сублимацией мяса в водном растворе размягчающего препарата. При этом создаются условия для контакта фермента не только с поверхностью мяса, но и с внутренними структурами путем проникновения раствора в хорошо развитую систему пор и капилляров. В процессе регидрагации мяса обеспечивается равномерный по всему объему контакт фермента с основными белковыми структурами. В результате этого достигается максимальное размягчение мяса при минимальном расходе фермента. Положительное действие на мягче- ние мяса оказывает поваренная соль.

Для обработки мышечной ткани применяют ферментные препараты животного, растительного и микробного происхождения. Из ферментов животного происхождения высокой колла- геназной и эласгазной активностью обладает фермент панкреатин, получаемый из поджелудочной железы свиньи. Иногда его применяют в смеси с ферментами трипсином, химотринсином, пепсином. Однако ферменты животного происхождения имеют весьма ограниченные сырьевые источники.

Среди группы ферментов растительного происхождения для обработки мышечной ткани используют папаин, фицин, бромелаин и другие. Например, папаин применяют как размяг- чигель жесткого мяса. Он используется при созреваниия мяса, изготовлении полуфабрикатов, получении гидролизатов. Следует отметить, что эти протеазы также не могут полностью удовлетворить запросы промышленности ввиду дефицита сырья для их получения, малого выхода при переработке растений, а следовательно, высокой стоимости.

Прогеиназы микробного происхождения имеют ряд преимуществ по сравнению с другими источниками: неограниченность сырьевой базы, относительно простая технология получения, невысокая стоимость и др. Кроме того, микробные нротеи- назы, как правило, способны к более глубокой деструкции белков, в том числе многих фибриллярных, а также обладают широким спектром действия на различные субстраты.

Искусственно внесенные в сырье препараты протеаз обеспечивают эффект преобразования белковых структур, аналогичный автолитическому. Однако процессы созревания мяса под их влиянием протекают в 3-5 раз интенсивнее и заканчиваются в более короткий срок. При этом интенсивность и глубина превращений белковых структур зависят от дозировки препаратов, физико-химических условий, продолжительности обработки. Ферментная обработка сырья придает мясу нежную консистенцию, нужные вкус и аромат.

При переработке сельскохозяйственных животных образуется перечень вторичных продуктов, богатых ценным белком: кровь и ее производные, кость, хрящ, сухожилия, шкуры, мездра, рога, копыта и г.д. Из перечисленных отходов на пищевые цели идет кровь (как источник белка). Остальные продукты применяются недостаточно для пищевых и кромовых целей, хотя имеют высокую биологическую ценность.

Несмотря на высокое содержание незаменимых аминокислот, в исходном виде эго сырье представляет лишь потенциальный источник белка ввиду слабой доступности к гидролизу со стороны пищеварительных ферментов (низкая переваривае- мосгь и усвоение), а также невыраженных функциональных свойств (плохая растворимость и эмульгирующая способность, жесткость и т.д.). Наиболее эффективным средством решения данной проблемы является биотехнология, а именно использование ферментов. Особенно здесь полезны ферменты микроорганизмов, способные расщеплять труднодоступные белки животных, главным образом кератин, коллаген, эластин. Ферментация сырья позволяет улучшить пищевые свойства, функциональность и биологическую ценность продуктов.

Микроорганизмы все шире используются в переработке мяса и рыбы. Это связано с их способностью продуцировать в тканях мяса и рыбы специфические биологически активные компоненты: органические кислоты, бактериоцины, ферменты, витамины, что способствует улучшению санитарно- микробиологических, органолептических показателей готового продукта, а также позволяет интенсифицировать производственный процесс.

Сахар, часто используемый при посоле мяса и мясопродуктов совместно с солью и нитритом, не только улучшает вкус продукта и способствует стабилизации его окраски, но и благотворно влияет на жизнедеятельность молочнокислых бактерий, входящих в состав бактериальных препаратов. При применении определенных бактериальных препаратов используют и соответствующий состав сахаров (глюкозу, лактозу, сахарозу и их смеси).

Наличие сахаров (прежде всего, сахара и глюкозы) в рассоле способствует развитию в мясопродуктах кислотообразующих микроорганизмов, что позволяет сохранять значение pH рассола на уровне, неблагоприятном для развития гнилостных микроорганизмов. Например, если pH рассола без сахара после 30 суток обычно превышает 6,0 и достигает иногда 7,3, то в рассоле с добавлением сахара pH снижается и к концу длительного посола составляет 5,7-5,8.

Обмен веществ и развитие клеток микроорганизмов невозможны без питания. Кроме воды, им необходимы углерод, азот, минеральные вещества, микроэлементы, витамины, аминокислоты, пиримидины и пурины.

По способности использования источников углерода различают авто- и гетеротрофные микроорганизмы. Первые используют в качестве источника углерода углекислый газ и органические вещества, которые они могут получать, окисляя неорганические. Гетеротрофным микроорганизмам требуются органические источники углерода. В пищевой промышленности применяются гетеротрофы. Источниками углерода им служат моносахариды (глюкоза, фруктоза, галактоза и др.), дисахариды (сахароза, лактоза, мальтоза, целлобиоза), трисахариды (раффиноза), полисахариды, олиго- и полипептиды, аминокислоты, а также природное сырье и продукты его переработки (картофель, мука, свекла, целлюлоза, шрот и др.). В настоящее время в качестве источника углерода в биотехнологии используют гидролизаты крахмала и целлюлозы, сахарную мелассу, спирт и др.

Плесневые грибы растут преимущественно на сахаросодержащих средах, а бактерии - на белоксодержащих.

Микроорганизмам, не способным усваивать азот из воздуха, нужны для развития азотсодержащие среды. Обычно в качестве таковых используют производные аммиака, сам аммиак, мочевину, аминокислоты (глицин, аланин, валин и др.), пептоны и белковые продукты (например, мясной экстракт).

Из минеральных веществ самым важным для микроорганизмов является фосфор, участвующий в переносе энергии и входящий в состав нуклеиновых кислот. Кроме того, им требуются сера, калий, кальций, магний и натрий, а также микроэлементы: кобальт, марганец, медь, цинк, молибден, хром, никель, ванадий, бор, селен, кремний, вольфрам, хлор и йод. Для удовлетворения потребности микроорганизмов в этих элементах их вносят в субстрат в виде неорганических солей.

Витамины являются необходимым условием развития различных микроорганизмов, гак как они входят в состав ко- ферментов (например, никотинамид в НАД+ и НАДФ+). Наиболее важными для микроорганизмов витаминами являются тиамин (В,), рибофлавин (В2), пиридоксин (Вв), биотин, нантоте- новая кислота, фолиевая кислота и цианокобаламин (В 12).

Пиримидины и пурины необходимы живой клетке для синтеза нуклеиновых кислот.

 
Посмотреть оригинал
< Пред   СОДЕРЖАНИЕ ОРИГИНАЛ   След >