СОВРЕМЕННЫЕ МАТЕРИАЛЫ НА ОСНОВЕ СОЕДИНЕНИЙ УГЛЕРОДА

Многие из перспективных направлений в материаловедении, нанотехнологии, наноэлектронике, прикладной химии связываются в последнее время с фуллеренами, нанотрубками и другими похожими структурами, которые можно назвать общим термином углеродные каркасные структуры.

ФУЛЛЕРЕНЫ

В 1985 г. группа исследователей — Роберт Керл, Харолд Крото, Ричард Смолли, Хит и О’Брайен — исследовали масс-спектры паров графита, полученных при лазерном облучении (абляции) твердого образца, и обнаружили пики, соответствующие 720 и 840 атомным единицам массы. Они предположили, что данные пики отвечают молекулам С60 и С70 и выдвинули гипотезу, что молекула С60 имеет форму усеченного икосаэдра симметрии 1Л, а С70 — более вытянутую эллипсоидальную форму симметрии В. Полиэдрические кластеры углерода получили название фуллеренов, а наиболее распространенная молекула С60 — бакминстер- фуллерена (рис. 1.21), по имени американского архитектора Бакминстера Фуллера, применявшего для постройки куполов своих зданий пяти- и шестиугольники, являющиеся основными структурными элементами молекулярных каркасов всех фуллеренов.

Рис. 1.21

Молекула Сеобакминстерфуллерена

Фуллерёны — молекулярные соединения, принадлежащие классу аллотропных форм углерода (другие — алмаз, карбин и графит).

В молекулах фуллеренов атомы углерода расположены в вершинах правильных шести- и пятиугольников, из которых составлена поверхность сферы или эллипсоида. Самый симметричный и наиболее полно изученный представитель семейства фуллеренов — фуллерен С60, в котором углеродные атомы образуют многогранник, состоящий из 20 шестиугольников и 12 пятиугольников и напоминающий футбольный мяч. Так как каждый атом углерода фуллерена С60 принадлежит одновременно двум шести- и одному пятиугольнику, то все атомы в С60 эквивалентны, что подтверждается спектром ядерного магнитного резонанса (ЯМР) изотопа С13 — он содержит всего одну линию. Однако не все связи С-С имеют одинаковую длину. Связь С=С, являющаяся общей стороной для двух шестиугольников, составляет 1.39 А, а связь С-С, общая для шести- и пятиугольника, длиннее и равна 1.44 А. Кроме того, связь первого типа двойная, а второго — одинарная, что существенно для химии фуллерена С60.

Следующим по распространенности является фуллерен С70, отличающийся от фуллерена С60 вставкой пояса из 10 атомов углерода в экваториальную область С60, в результате чего молекула С70 оказывается вытянутой и напоминает своей формой мяч для игры в регби.

Так называемые высшие фуллерены, содержащие большее число атомов углерода (до 400), образуются в значительно меньших количествах и часто имеют довольно сложный изомерный состав. Среди наиболее изученных высших фуллеренов можно выделить С„, где п = 74, 76, 78,80, 82 и 84.

Конденсированные системы, состоящие из молекул фуллеренов, называются фуллеритами. Наиболее изученная система такого рода — кристалл С60, менее — система кристаллического С70. Исследования кристаллов высших фуллеренов затруднены сложностью их получения. Атомы углерода в молекуле фуллерена связаны а- и л-связя- ми, в то время как химической связи (в обычном смысле этого слова) между отдельными молекулами фуллеренов в кристалле нет. Поэтому в конденсированной системе отдельные молекулы сохраняют свою индивидуальность (что важно при рассмотрении электронной структуры кристалла). Молекулы удерживаются в кристалле силами Ван-дер- Ваальса, определяя в значительной мере макроскопические свойства твердого С60.

При комнатных температурах кристалл С60 имеет гцк- решетку с постоянной 1,415 нм. При понижении температуры происходит фазовый переход первого рода (Гкр * 260 К) и кристалл С60 меняет свою структуру на простую кубическую (постоянная решетки 1,411 нм).

Молекулярный кристалл фуллерена является полупроводником с запрещенной зоной ~1,5 эВ, и его свойства во многом аналогичны свойствам других полупроводников. Поэтому ряд исследований был связан с вопросами использования фуллеренов в качестве нового материала для традиционных приложений в электронике: диод, транзистор, фотоэлемент и т. п. Здесь их преимуществом по сравнению с традиционным кремнием является малое время фотоотклика (единицы нс). Однако существенным недостатком оказалось влияние кислорода на проводимость пленок фуллеренов, и, следовательно, возникла необходимость в защитных покрытиях.

Было установлено, что легирование твердого С60 небольшим количеством щелочного металла приводит к образованию материала с металлической проводимостью, который при низких температурах переходит в сверхпроводник. Легирование С60 производят путем обработки кристаллов парами металла при температурах в несколько сотен градусов Цельсия. При этом образуется структура типа Х3С60 (X — атом щелочного металла). Первым интеркали- рованным металлом оказался калий. Переход соединения К3С60 в сверхпроводящее состояние происходит при температуре 19 К. Это рекордное значение для молекулярных сверхпроводников. Вскоре установили, что сверхпроводимостью обладают многие фуллериты, легированные атомами щелочных металлов в соотношении либо Х3С60, либо ХУ2С60 (X, У — атомы щелочных металлов). Рекордсменом среди высокотемпературных сверхпроводников (ВТСП) указанных типов оказался Ш)С82С6о — его Ткр = 33 К.

Среди других интересных приложений следует отметить аккумуляторы и электрические батареи, в которых так или иначе используются добавки фуллеренов. Основой этих аккумуляторов являются литиевые катоды, содержащие интеркалированные фуллерены. Фуллерены также могут быть использованы в качестве добавок для получения искусственных алмазов методом высокого давления. При этом выход алмазов увеличивается на а 30%. Фуллерены могут применяться и для создания новых лекарств.

 
Посмотреть оригинал
< Пред   СОДЕРЖАНИЕ ОРИГИНАЛ   След >